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Abstract. The traditional strategy for dealing with slow dynamics is summarized. Direct
application of this strategy to supercooled liquids and glasses gives rise to problems. Two types
of reduced description, namely, microcanonical and canonical versions of dynamical density
functional theories, are explained. The non-equilibrium projector technique is used to develop
this canonical reduced description. Some speculative proposals as regards how to deal with the
barrier crossing regime are outlined.

1. Introduction

In condensed matter physics one encounters fast dynamics with the timescale of 10−13 to
10−14 s or less involving a small number of degrees of freedom (or molecules) which can be
easily dealt with by computers, and also slow dynamics ranging from 10−9 s to thousands of
years which is typically cooperative involving a large number of molecules and is challenging
even with the help of computers. Of course, in future the time may come when many of today’s
challenging problems can be handled by computers. In that case, however, scientists could
still be at a loss confronted by a deluge of computer output. Therefore there will always be
a need and room for theoretical study of the latter more challenging problems. It should be
mentioned also that many important processes are slow. A typical such example is protein
folding.

The traditional strategy for the theory of slow dynamics goes like this:

(1) Identify slow variables.
(2) Derive a closed kinetic equation for the slow variables.
(3) Solve the kinetic equation to obtain results of physical interest.

Historically the most successful and well-known example is provided by the dynamics of
dilute gas [1]. Here the slow variable is the single-particle phase-space distribution function.
The kinetic equation for this slow variable is just the Boltzmann equation. By solving this
equation we obtain the hydrodynamic equation containing the transport coefficients expressed
in terms of properties of molecules constituting the gas. The second successful example is
critical dynamics [2]. Here, thanks to the universality of the problem and the advent of the
renormalization group technique which handles the universal behaviour best, many detailed
theoretical predictions can be made which have been successfully tested by experiments. Yet
another example is the late-stage scaling regime of phase-ordering dynamics [3] although
analytic theories are less successful.
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In the three examples mentioned above, the reason for the success is easy to recognize:
the existence of well-defined mesoscopic regimes with distinct characteristic scales of length
and time. These characteristic scales are: the mean free path and mean free time for dilute
gas; the correlation length and lifetime of critical fluctuations for critical dynamics; and the
characteristic length scale of domain wall patterns and typical growth time for late-stage phase-
ordering dynamics.

However, in most other cases, the existence of such a mesoscale is never clear cut. For
example, we take up the case of supercooled liquids and glasses which is the theme of the
workshop to which this Special Issue is devoted. Certainly here we are dealing with processes
involving a very wide range of timescales. However, there is apparently no corresponding wide
range of length scales by which one can identify the type of relevant dynamical processes. It is
possible that there exist such length scales which are too subtle to have been identified so far.

Under such circumstances, it came as a surprise that a simple theory like the mode-coupling
theory (MCT) was used to attack the difficult problem of supercooled liquids and glasses and
succeeded in making testable predictions [4]. Despite its impressive successes achieved so far,
the recent experimental evidence showing the absence of the predicted ‘knee’ [5] for laboratory
glasses except for colloidal glasses indicates a need for a more basic theoretical framework, by
means of which one can smoothly link the two domains above and below the mode-coupling
critical temperature Tc by taking into account the obscure ‘hopping processes’ in a theoretically
more satisfactory manner.

The dynamical density functional theory (DDFT) proposed by us [6, 7, 15] was designed
to meet such a need. The equation that we have proposed for fluids at high density takes the
following form for the density probability functional P({ρ}, t):
∂

∂t
P ({ρ}, t) = −L

∫
dr

δ

δρ(r)
∇ · ρ(r)∇

[
T

δ

δρ(r)
+
δH {ρ}
δρ(r)

]
P(({ρ}, t) (1)

where L is the kinetic coefficient that incorporates rapid temporal variation of the momentum
density, and ρ(r) is the local number density with ρ0 its average value. For the free-energy
functional, we use the following Ramakrishnan–Yussouff-type one [8]:

H {ρ} = T

∫
dr ρ(r)

[
ln

ρ(r)

ρ0
− 1

]
− 1

2
T

∫ ∫
dr dr′c(r − r′)[ρ(r) − ρ0][ρ(r′) − ρ0]

(2)

where c(r) is the direct correlation function.
Some numerical results are presented in [6]. There we have shown indications of barrier

crossing processes which are beyond the scope of current MCT and computer simulations.
But, strangely enough, we failed to reproduce numerically the shorter-time α − β relaxations
predicted by the idealized MCT. Since the self-consistent equation of the idealized MCT
follows from our DDFT by further introducing the factorization approximation [7] or one-
loop-order renormalized perturbation theory [13], this leads to the strange conclusion that the
inadequacy of our DDFT is cancelled by the error incurred by the factorization approximation
since the prediction of the idealized MCT is verified quantitatively by the recent computer
simulations [14]. This point needs clarification, perhaps with the help of a computer.

There are still other loose ends in the theory. The theory is based on the intuitive argument
that in dense fluid where particles are jammed together the local mass or particle number density
is the only slow variable and thus other variables like the momentum density are adiabatically
eliminated. This, however, is far from obvious. For instance, fast vibrational motions which
are still allowed in a jammed condition involve also momentum displacements of particles,
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and hence density change†. In section 3 we will discuss the relevance of the reaction rate
theory to this problem. It appears that DDFT obtained by eliminating the momentum variable
corresponds to the high-friction limit of the Kramers rate theory [11]. This means that the
region of validity of DDFT should be limited to a certain high-temperature region.

In the derivation of (1) the density variable was supposed to consist of the sum of the delta
functions specifying the exact locations of each particle. However, in the continuum theory of
this type a spatially coarse-grained density variable would be more appropriate. There is no
unambiguous way of constructing such a variable but we shall comment on this question later
in section 3.

Yet another problem was pointed out in a recent work by Marconi and Tarazona [9]. They
derived a dynamical equation obeyed by the non-equilibrium averaged density field where the
free-energy density functional of the inhomogeneous fluid naturally appears. In particular,
they argue that the free-energy density functional that enters other existing dynamical density
functional theories is the microcanonical one, which is tied to the local equilibrium in which
the density profile itself (not the averaged one) is precisely specified. Thus they did not
discuss fluctuation effects. We will show that one can still talk about fluctuation effects in
such situations as well. However, by its construction the usual canonical free-energy density
functional is defined only for locally stable states that can be induced by an external field. Hence
the equation derived by Marconi and Tarazona [9] cannot deal with problems like spinodal
decomposition and barrier crossing since there we have to deal with the density profile for
which the free-energy functional is locally unstable. Average effects of such processes must
be implicitly included in the equation itself.

On the other hand, one may question the ultimate justification for using the MCT or
existing dynamical density functional theories for such problems as supercooled liquids, the
glass transition, and solvation dynamics, where the spatial scales involved appear microscopic
although the timescale is enormous, because MCT and related ideas were most successful for
critical phenomena, and was able to deal most effectively with long-spatial-scale cooperative
processes‡.

2. Canonical reduced description

2.1. The two types of reduced description

Once we identify the gross variables, a convenient tool for implementing the idea of reduced
description is the projector technique which was pioneered by Nakajima, Zwanzig, and
Mori [12]. Broadly speaking, one can think of the two types of reduced description which
may be called microcanonical and canonical. The microcanonical one introduced by Zwanzig
chooses to specify the precise values for the gross variables and projects onto states where all
other degrees of freedom are relaxed to the local equilibrium state with these fixed values for
the gross variables. On the other hand, the canonical one projects onto states where only the
average values of the gross variables are fixed. If all the gross variables are the extensive ones,
these two types of description are essentially equivalent in the thermodynamic limit in the sense
that the fluctuations of gross variables are not important. However, the gross variables often
represent certain density variables like the local mass density and the local momentum density,

† Various cases of elimination of fast variables are discussed in [10]. Adiabatic elimination of the velocity field
mentioned above belongs to the first category discussed in this reference, whereas approaches belonging to other
categories should also be explored.
‡ We must make a distinction from static quantum or classical mechanical density functional theories, which have
rigorous variational principle foundations. See [33].
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and then fluctuation effects are no longer negligible. The two types of reduced description
necessarily involve two types of free-energy functionals of gross variables.

One way to circumvent this problem is to make an assumption that the equilibrium
distribution function of the gross variables is Gaussian. Then the free-energy functional that
enters this distribution is the same as the one that results from using the Ramakrishnan–
Yussouff-type density functional in the quadratic approximation of fluctuations, as we have
done elsewhere [7]. Here we address this question without making this phenomenological
assumption.

Since the microcanonical reduced description was described elsewhere [15], we here
focus on the canonical reduced description. At this point, we mention that if we were content
with looking at near-equilibrium situations where only the effects linear in deviations from
equilibrium are retained, such a reduced description is already provided by Mori’s well-known
work [16] and we have nothing to add. But here we will be interested in situations arbitrarily
far from equilibrium, such as those encountered in the cases of supercooled liquids and glasses.
Such a description can also be found in the literature (see [17] and earlier references quoted
therein; also see [18]). However, this is not yet fully worked out and there is a room for further
developments. Thus we begin the next subsection by reviewing our old work [17] together
with some new results.

The material in this section is highly formal and may give the impression of merely being an
academic exercise. However, it should be mentioned that this sort of formal framework played
an important role in making early predictions about non-analytic shear thinning in fluids before
computers [17] and is still a subject of active discussion today [19]. The canonical reduced
description is useful for studying the average behaviour when the processes caused by whatever
instabilities are present, like barrier crossings, are averaged out—for instance, glassy rheology.
Recently, the same projector as is described below was applied to the problem of aging [21].

2.2. The non-equilibrium projection operator

We consider a classical system whose microscopic state can be specified by a point in the
phase space denoted by x̂. We choose to denote microscopic quantities by attaching a hat .̂
The normalized microscopic distribution function at a time t is then denoted by D̂t (x̂). A set of
gross variables are represented by the phase-space functions Aj(x̂), j = 1, 2, . . .. It will turn
out to be convenient to employ vector notation where the set of gross variables are arranged
in a vector denoted by A(x̂). The time evolution is then given by the following Liouville
equation:

∂t D̂t (x̂) = −L̂(x̂)D̂t (x̂) (3)

where −L̂(x̂) is the Liouville operator and the partial time derivative is denoted by ∂t . In the
following we often omit the phase-space variable x̂ where no confusion arises.

A canonical local equilibrium state is generally written as

D̂c
t (x̂) = eσ̂

c
t (x̂) (4)

σ̂ c
t (x̂) ≡ −�(bt ) + bt · A. (5)

Here bt is the vector conjugate to A and is so chosen as to reproduce the same average values
at of A in D̂t (x̂). �(bt ) then guarantees the normalization of D̂c

t (x̂):

Tr D̂c
t (x̂) = 1 (6)

where Tr denotes the phase-space integration. Hence we have �(bt ) = ln Tr ebt ·A which is
like a free energy. The averages over D̂t (x̂) and D̂c

t (x̂) are, respectively, denoted by 〈· · ·〉t
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and 〈· · ·〉ct . Thus we must have

at = 〈A〉t = 〈A〉ct . (7)

We also use the notation δt X̂ ≡ X̂ − 〈X̂〉ct for an arbitrary phase function X̂. We can then
define a time-dependent generalized susceptibility matrix χt and its inverse by

χt ≡ ∂

∂bt

at = 〈δtA δtA〉ct (8a)

χ−1
t = ∂

∂at

bt . (8b)

We then find
∂�

∂bt

= at

∂σ̂ c
t (x̂)

∂bt

= δtA
∂σ̂ c

t (x̂)

∂at

= χ−1
t · δtA. (9)

In general we have

∂

∂bt

〈X̂〉ct = 〈δtA X̂〉ct (10a)

∂

∂at

〈X̂〉ct = χ−1
t · 〈δtA X̂〉ct . (10b)

We are now ready to introduce a time-dependent projector onto D̂c
t , namely P c

t , which is
defined by

P c
t X̂ ≡ D̂c

t Tr X̂ +
∂D̂c

t

∂at

· Tr X̂ δtA. (11)

Then we can show the following:

P c
t D̂t = D̂c

t ∂t D̂
c
t = P c

t ∂t D̂t P c
s P

c
t = P c

s Qc
sQ

c
t = Qc

t (12)

where the complement projector is defined by Qc
s ≡ 1 − P c

s . It is then possible to derive a
formal closed equation for D̂c

t [17].
Hereafter we skip details of the algebraic manipulations due to space limitations.
In order to study the time evolution of a dynamical variable such as A(t) it is useful to

consider the adjoint of an operator, say O, denoted as O† and defined as follows:

Tr X̂OŶ = Tr ŶO†X̂. (13)

The Liouville operator here is assumed to have the property L̂† = −L̂. We then obtain that an
adjoint of P c

t can be denoted simply by Pt ≡ (P c
t )

† = (D̂c
t )

−1P c
t D̂

c
t :

PtX̂ ≡ 〈X̂〉ct + δtA · χ−1
t · 〈(δtA)X̂〉ct . (14)

2.3. The equations for the average and deviation

We now give the time evolution of at and its deviation (δtA)t ≡ etL̂A − at :

d

dt
at = 〈L̂A〉ct −

∫ t

0
ds bs · Kc

0(ts) (15)

d

dt
(δtA)t = (δtA)t · χ−1

t · 〈(δtA)L̂A〉ct −
∫ t

0
ds (δsA)s · χ−1

s · Kc(ts) + f̂(t0)

+
∫ t

0
ds esL̂(∂sPs)f̂(ts). (16)
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Here we have introduced the memory kernels:

Kc(ts) ≡ Tr(Qc
sL̂ δsA D̂c

s )f̂(ts) = 〈[Qs(1 + δsA bs) · (L̂A)]f̂(ts)〉cs (17)

Kc
0(ts) ≡ 〈f̂(s)f̂(ts)〉cs (18)

where

f̂(ts) ≡ QsUc(ts)
†QtL̂A = QsUc(ts)

†L̂A (19)

and, in particular,

f̂(t) ≡ f̂(tt) = QtL̂A. (20)

Here we have introduced the projected time evolution operator as

Uc(ts)
† ≡ exp−

(∫ t

s

ds ′ L̂Qs ′

)
(21)

where e− is the inverse time-ordered exponential. We also find

(∂sPs)f̂(ts) = δsA · χ−1
s · 〈δsA f̂(ts) δsA〉cs · χ−1

s · (∂sas). (22)

Thus the last term of (16) represents coupling of the drift as and deviation δsA through the
random force f̂(ts), which is reminiscent of the mode-coupling mechanism [20] where random
forces couple to the terms bilinear, trilinear, . . . in gross variables.

If we neglect the memory effects and introduce the friction matrix ζ, the average equation
is simplified to

d

dt
at = 〈L̂A〉ct − bt · ζ. (23)

The dense-fluid equation of Marconi and Tarazona [9] follows as a special case of (23)
where A consists of the local mass and momentum densities.

3. The barrier crossing regime

Recent progress in our understanding of the behaviour of dense fluids near freezing or below
in terms of MCT and other ideas such as inherent structures [28] and instantaneous normal
modes [24] tempts us to speculate about a strategy for finding a more comprehensive reduced
description. One of our objectives is to explore a method by which the current MCT can
be extended to the region below the mode-coupling critical temperature Tc in a natural
manner. Another is to understand the relationship between Newtonian dynamics (ND) and
stochastic dynamics (SD). Recent computer simulations revealed that fluids obeying ND and
SD show very similar long-time behaviour in the high-density regions [14]. There is a well-
established method for deriving a Smoluchowski equation for interacting Brownian particles
immersed in a fluid consisting of atoms which are much smaller than the Brownian particles,
where the smallness parameter is the square root of the mass ratio of a fluid atom and a
Brownian particle [23]. Here, however, no such obvious smallness parameter exists, and the
aforementioned results of computer simulation seem to suggest the need for a new type of
reduced description. We argued in [15] that Newtonian fluids and Brownian fluids (that is,
those described by the Smoluchowski equation) lead to the same dynamical density functional
equation, from which one can derive the Götze self-consistent MCT equation after using the
factorization approximation. However, the argument is far from convincing, involving drastic
simplification of a complicated expression for a memory kernel, containing projectors.

At low temperatures the system is settled into one of the so-called inherent-structure
states in which each particle is performing small-amplitude thermal oscillations around
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its reference position. This is interrupted by occasional barrier crossing processes. The
instantaneous normal-mode approach [24] attempts to capture this picture with real and
imaginary eigenfrequencies corresponding to locally stable and unstable points in the N -
particle configuration space, suggesting the existence of two widely separated timescales†.

If one performs a transformation of phase-space variables into normal-mode variables, one
can further transform each normal-mode variable into action and angle variables. The action
variables are constants of the motion as long as the oscillations are harmonic. This, of course,
is not always the case, as the temperature increases and anharmonicity sets in. However,
these action variables are still slow variables compared to the rapidly varying angle variables.
Hence one can hope to obtain a reduced description in terms of the action variables where the
angle variables are averaged out. The action variables, being adiabatic invariants for integrable
systems, are known to play prominent roles in non-linear dynamics [25] and there are other
examples of reduced descriptions in terms of action variables [11,26,27]. A possible difficulty
in this scenario is that the nature of the action variables generally changes after each thermally
activated process, which is like having products after each chemical reaction which will then
become new reactants for the next chemical reaction. In our case we will have to describe,
by a single kinetic equation representing the desired reduced description, the whole series of
successive thermally activated processes requiring a new set of action variables each time,
which remains a challenge. Such kinetic equations, once established, should be of enormous
help in elucidating the slow dynamics as in the case of other more traditional examples outlined
in section 1.

The original inherent-structure idea seeks minimum-energy states reached at zero temp-
erature [28]. However, for our purpose it is more reasonable to choose the self-consistently
renormalized states that include effects of thermal fluctuations [29]. Furthermore, for stiff
interaction potentials like those for hard spheres, appropriate modifications will be needed
[30, 31].

The use of action variables permits an unambiguous though formal definition of the coarse-
grained density which replaces the sum of delta functions. Here sharply defined locations of
particles are replaced by ones smeared out by thermal oscillations about the original reference
point. At low temperatures this coarse-grained density will look as follows:

ρ(r; {r0}, {J }) =
∑
j

1

(2π)3/2
√

det Qj

exp

{
−1

2
(r − r0

j ) · [Qj ]−1 · (r − r0
j )

}
(24)

where {r0} is the set of reference positions of the particles r0
j and the sum is over the particle

labels j = 1, 2, . . . , N . Qj is the dyadic defined by

Qj ≡
∑
λ

Jλ

mωλ

RjλRjλ. (25)

Here Jλ is the action variable of the normal mode labelled as λ and Rjλ the transformation
vector that connects the normal coordinate labelled λ to rj − r0

j , the deviation of the position
of the particle j from its reference point, and mωλ is the particle mass times the frequency of
the normal mode λ. If Qj is an infinitesimal small number times the unit dyadic, equation
(24) reduces to the usual sum of delta functions. This coarse-grained density or its appropriate
average over the action variables might be used more appropriately to construct a dynamical
density functional equation at low temperatures, because the fast time variation contained in
the angle variables is averaged out.

† It is unlikely that all the imaginary eigenfrequencies contribute to relevant barrier crossings. Those associated with
barriers with heights less than kBT are clearly irrelevant. It is pointed out that some imaginary frequencies come
from shoulder-type portions of landscape, and also that there is a low-frequency cut-off associated with long-time-tail
collective behaviour [24].
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4. Concluding remarks

The microcanonical version of the dynamical density functional theory (MDDFT) is a suitable
stochastic model that incorporates the MC mechanism and is still capable of describing barrier
crossings [6]. A distinctive feature of our MDDFT as compared to direct MD or MC simulations
is that the short-distance correlation essential in dense fluids is incorporated as input through
the direct correlation function. Another distinctive feature is that it is a minimal model for both
Newtonian and Brownian dynamical systems as far as the long-time behaviour is concerned.
Indeed, the similarity of the two systems at long times was verified by simulation as well [14].
We think that the MDDFT is a useful model, bridging between the MCT and barrier crossing
regimes, but one should always keep in mind the region of its validity when applying the results
of MDDFT in analysing real systems, as one often finds in the literature blind applications of
the MDDFT to calculate transport coefficients of liquid and to study solvation dynamics.

We have yet to find an effective strategy of wider applicability for supercooled liquids and
glasses, since this is an area where none of the traditional strategies seems adequate. On the
other hand, a great deal of effort has been made on the simpler related problem of reaction
rate processes [32], which might suggest a new approach. Although it would be too ambitious
at this time to aim at a single scheme to cover the entire glassy dynamics, one still hopes
that at least an efficient low-temperature treatment of dense fluid below the freezing point can
be found where we definitely have processes with widely separated timescales. The correct
extrapolation of MCT to the regime below the mode-coupling critical temperature Tc will be
preceded by better understanding of the low-temperature regime dominated by barrier crossing
dynamics.
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